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Abstract 
Motion blur occurs in photography by the motion of objects during the finite exposure time that the cam-
era shutter remains open for to record the image on film. The traditional method of rendering a motion 
blur with a computer is to render the scene at many discrete time instances in every frame. In this paper, 
we present an efficient motion blur generation method that leverages modern commodity graphics hard-
ware. Our method avoids rendering the entire complex scene many times per frame. It first renders the 
scene into a texture, next renders the optic flow, created based on object transformation, to a vector field 
texture.  The scene texture is finally efficiently blurred according to the vector field using texture-
mapping hardware to do a piecewise iterative line integral convolution. Though our method uses vertex 
velocities to calculate image pixel velocities, the line integral convolution is performed on an image, mak-
ing our method largely independent of scene complexity. 
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1. Introduction 
In the virtual world of the computer, at discrete time 
instances, objects are at discrete locations. When render-
ing the virtual world to a display device the world is 
captured at one singular instant in time. As a result the 
blur a camera or a human eye sees when viewing a rap-
idly moving object is absent.  The blurring of the image 
taken by a camera due to motion can be attributed to the 
exposure of the camera film to light for an amount of 
time in which an object moves a certain distance.   

The traditional method of rendering a motion blur with a 
computer is, for a single frame, to render the scene at 
many discrete time instances, average these renderings 
and output to the display device. To save space, the ren-
dering and averaging can be done in hardware using the 
accumulation buffer [5].  However the quality of  the 
final output of each frame depends on the number of 
renderings that are combined to make it. Since the whole 
scene must be rendered multiple times, this method does 
not scale well.  If the number of polygons in the scene is 
large, rendering the scene multiple times will lower the 
frame rate. If the number of times a scene is rendered 
per frame is too low for the amount of motion happening 
in the scene, then instead of a smooth motion blur, the 
rendering produces ghosting or double vision as seen in 
figure 1.  This effect is called temporal aliasing. A vir-
tual world with fast motion may need to be rendered up 
to 20 times or more per frame to eliminate ghosting.  
The 3dFx Voodoo5 6000 had 4 gpus and frame buffer 
memory segments that could do a 4-step motion blur in 
parallel.  Although this can be done in parallel, there are 

practical and intelligent approaches of performing the 
same more  efficiently and in less demanding ways. 

 

 

 

 

 

 

 

 

Figure 1: Ghosting or temporal aliasing effect when the 
motion blur of a fast moving object is generated using 
accumulation buffer but large time interval between 
multiple renderings.  

In this paper, we present an efficient motion blur genera-
tion method which leverages modern commodity graph-
ics hardware. Our method avoids rendering the entire 
complex scene many times per frame. It first renders the 
complex scene to a texture, and then renders the optic 
flow created based on object transformation to a vector 
field texture. The scene texture is finally efficiently 
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blurred according to the vector field using texture map-
ping hardware by performing piecewise iterative line 
integral convolution [2].   After obtaining the image 
pixel velocities from the vertex velocities, all operations 
including the line integral convolution are done on an 
image, making our method largely independent of scene 
complexity. 

The organization of this paper is as follows.  Section 2 
introduces previous work. Section 3 gives an overview 
of our algorithm; and an efficient implementation of the 
same is explained in Section 4. Finally we present re-
sults in Section 5 and offer discussions and future work 
in Section 6. 
2. Previous Work 
The motion blur effect has often been addressed in com-
bination with solving the spatial aliasing problem. The 
mathematical expression for the intensity of a pixel 
I(x,y) on the screen is generalized by the equation: 

∫∫
ΩΤ

= dtdwtLtRyxI ),(),(),( ϖϖ  (1) 

where L(ω,t) is the incoming luminance function and 
R(ω,t) is the reconstruction filter [13]. In this equation 
smooth motion is reconstructed from a discrete set of 
renderings (images) over time. 

2.1. Solving Temporal Visibility and Shading: 
Sung et al. [13] approach this problem in a very general 
framework by solving the spatial-temporal aliasing prob-
lem. Their approach, though generic in nature, demands 
significant hardware, both as memory and processing 
power. The authors solve the two aliasing problems 
separately by decomposing equation (1) into time and 
spatial domains, and solving the spatial temporal visibil-
ity and spatial temporal shading problem separately, by 
observing pixel coverage per object per time sample and 
integrating over time and space. 

2.2. Synchronization of Frame and Texture Fre-
quency: 
There are some approaches, which solve the problem by 
preventing its cause. Norton et al.’s method [9] limits 
the frequency of texture functions to the pixel-sampling 
rate [13]. This essentially matches the rendering fre-
quency with the motion frequency and removes jerki-
ness. However, this method requires prior knowledge of 
motion. 

 

 

 

 

2.3. Post-Processing Algorithms: 
Post processing algorithms work in object space or im-
age space, keeping the interference of the motion blur 
algorithm in the object-rendering algorithm to a mini-
mum. 

2.3.1. Motion Blur by Time Convolution: 
Potmesil and Chakravarty [11] promulgate an approach 
of producing motion blur by time convolution of the 
normal image with the motion function. This approach 
works in image space, and is also capable of producing 
images with moving and non-moving objects, by post-
processing the image of moving objects and blending it 
with the image of non-moving objects. A Fourier trans-
form approach for time convolution is taken, which is 
difficult to implement in current commodity graphics 
hardware, although iterative time convolution in real 
time is feasible. 

2.3.2. Line Integral Convolution (LIC): 
Convolution along a vector in the direction of motion 
produces directional blur. This is the approach chosen by 
Cabral and Leedom [2]. A line integral is used instead of 
a piecewise linear approximation to express the direction 
of motion. The vector field is created with this line inte-
gral, and the normal image is convoluted per pixel in the 
direction of the corresponding vector in the vector field.  
This approach, however, produces good effects only if a 
dense, per-pixel vector map is available, which is as-
sumed in [2] as a preprocessing task. 

2.3.3. Blurring by Image Interpolation: 
Chen and Williams [1] present an image synthesis 
method through view interpolation – a process of inter-
polating on a per pixel basis to produce novel images. 
They discuss motion blur as one of the many effects 
which can be produced by their approach. Their method 
too, requires a dense per-pixel vector field. 

The approach adopted in this paper is inspired by the last 
two methods mentioned above. Thus, our approach 
works in image space, and is a post-processing step.  
Independently, Green [4] described a similar approach 
that uses image warping by offsetting a texture to pro-
duce motion blur and uses fragment shaders.  

3. Algorithm Overview 
Our method is based on iteratively warping the image of 
the object to be blurred and consecutively blending it 
with the image produced by the earlier iteration. As will 
be obvious in the implementation section, the algorithm 
operates in image space. The algorithm is divided into 
the following three steps and is summarized in figure 2: 
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Step 1: Creating Offsets: 
The scene is assumed to be expressed as a collection of 
polygons. As the scene is rendered, a per-vertex dis-
placement vector field is computed. This field stores the 
vertex offset in the form of a three-dimensional vector, 
which is used to warp the object. This vector is deter-
mined by two factors. Firstly, it is determined by the 
relative directions of the vertex normal and the direction 
of motion, because if a vertex is displaced along its nor-
mal, then it has to be maximally warped. This is so be-
cause motion in object space along the normal translates 
to more movement of its projection in image space. Sec-
ondly, the offset is determined by the speed of motion, 
which in this case, is indicated by the magnitude of the 
velocity vector itself. Therefore, at every vertex, the 
vector offset for warping is given by 

         VvnW )( ⋅=    (2)  

where n and v are the normal and velocity unit vectors 
and V is the total velocity vector. 

Step 2: Performing Line Integral Convolution: 
The object is next warped on a per-vertex basis using the 
offset vector field that was obtained in step 1. We start 
with the maximum warp possible, and then move to-
wards the actual final position of the object. The maxi-
mum warp is determined by the relation between the 
speed of the mouse which is used to move the object in 
our implementation, and the actual speed it is simulat-
ing. This factor is a user-defined parameter. The warped 
object is then alpha-blended with the original object, and 
this blended object is used as the original object in the 
next iteration. Blending is done with warps in directions 
along and opposite to the vector field, but the latter is 
done with a lesser scaling factor. The effect is that the 
trailing edges of the objects are blurred more than the 
leading, producing the typical blur trail. The alpha value 
for blending increases as the amount of warp decreases. 
This is intuitive because as the shape of the warped ob-
ject gets closer to the original shape of the object, pixels 
that are a part of the warped object have a greater chance 
of being a part of the object in its final position. This 
iterative blending performs line integral convolution, 
along the path of motion in a heuristic manner. The ex-
tent and quality of blur depend upon the number of itera-
tions over which LIC is carried out, and also on the dif-
ference between consecutive warps.  

Step 3: Rendering the Final Blurred Image to 
Screen: 
The final blurred object is now rendered to the screen to 
show the motion-blurred object.  

 

 

 

 

Figure 2.  An overview of the motion blur algorithm, 
with screenshots taken at every step of the algorithm.  

4. Implementation: 
The main motivation of our work is to make the imple-
mentation as efficient as possible, using current com-
modity graphics hardware, and deferring as many opera-
tions as possible to the GPU during the conventional 
image rendering. We have used the NVIDIA GeForce 
Quadro 4 graphics card for our implementation; the 
hardware features such as vertex and pixel shading ca-
pabilities that we use are common to other graphics 
cards. For demonstration purposes, we embedded our 
implementation into code obtained from [10]. This was 
done solely to have a good object offering flexible ma-
nipulations as a starting point.  Our candidate model, the 
NVIDIA Rocket Car, has a polygon count of about 
29000.  The static background texture has been taken 
from [6]. 

The current implementation blurs an object against a 
background image, which is available as a texture.  This 
method can be generalized by making separate sets of 
moving and non-moving objects in a preprocessing 
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stage, and then merging them together in the blending 
stage, as suggested in [11]. 

The vertex displacements are determined by a vertex 
shader and are rendered to the framebuffer as pixel dis-
placements. Since the shader cannot render negative 
offsets, we shift the range from (-1,1) to (0,1). Now, the 
algorithm warps the object based on relative directions 
of the velocity vector and the vertex normal. This may 
violate visibility constraints if the object has non-
manifold parts. This is because, when the dot product   
(n • v) < 0, no offset is generated. In non-manifold ob-
jects where two normals face each other, an inner face 
may relatively pop out, giving an incorrect vector field. 
To cure this anomaly, the vector field is rendered twice, 
in warped and non-warped versions, and the union is 
taken. These shifted vertex displacements are then read 
into an array of RGB values, and are shifted to  
(-0.5,0.5). The R and G values signify the x and y offsets 
respectively, while the B component is neglected. To do 
this, we rearrange the RGB values to R-G values.  They 
are then copied to a texture of DSDT_NV format. This 
texture format stores texture offsets (ds,dt) at texel loca-
tion (s,t).   

 

 

 

 

 

 

 

 

 

 

Figure 3.  A visualization of the offset vector field, 
showing red color for displacements along X direction, 
and green color for displacements along Y direction. 

The original object is rendered to a texture, using a pixel 
buffer.  Thus, all operations henceforth are performed on 
textures in image space. Warping is produced by passing 
these two textures (original RGB and offset DSDT) to a 
texture shader. In order to produce a warping effect, the 
texture shader performs a scaled offset lookup based on 
the DSDT texture and the warp factor (the scale), in the 
RGB texture. The RGB texture is then alpha blended 
with the warped texture to form the new RGB texture for 
the next warp-and-blend iteration.  The alpha function 

can be set to gaussians or ramps to obtain varying kinds 
of blur.  This blending is done with a pixel buffer as the 
rendering context, due to which, the blended image 
automatically becomes available as a texture. Successive 
lesser warps are produced by manipulating the warp 
factors in the texture shader.  When all iterations of LIC 
are done, the rendering context is switched back to the 
framebuffer, and this final texture is simply rendered on 
it to show the blurred object.   

The following table summarizes the various operations 
and where they are implemented (CPU or GPU): 

Operation Performed by/on 

Generating the vector offsets Vertex shader (GPU) 

Adjusting offsets and creating 
DSDT texture CPU 

Rendering object as an image Pixel Buffer (GPU) 

Warping Texture shader(GPU) 

Blending Pixel Buffer (GPU) 

For demonstration purposes, some additional computa-
tions are performed to render an optic-flow vector field 
to show the direction of motion as seen by the vertices 
(see figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  A visualization of the optic flow vector field.  
The blue start point of the flow shows the original tex-
ture coordinate, and the red end point of the flow shows 
the texture coordinate looked up after applying the offset 
found in the DSDT texture. 
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5. Results: 
For demonstration purposes, our implementation pro-
duces a main picture and five thumbnails, as shown in 
figures 5 and 6.   

From left to right, the thumbnails show: the original 
object, the offset-vector field (with red color for motion 
in X direction and green color for motion in the Y direc-
tion for visualization purposes), the object warped by the 
offset field, the optic flow vector field and the final 
blurred object.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Screenshot showing a blurred car moving 
in the horizontal direction (pure translatory motion) 

Figure 5 shows a screenshot of the motion blur produced 
by our implementation for pure translatory motion.  The 
“red” offset vector field in thumbnail 2 shows that this is 
a motion only along X axis, as is further evidenced by 
the optic flow vector field in thumbnail 4.  The user 
defined parameter for actual speed simulation (refer to 
Section 3.2) is set to simulate high speed, justifying the 
significant blur.   

Figure 6 shows a screenshot of the motion blur produced 
for rotational motion.  The varying colors in the vector 
field show the various directions in which each vertex 
moves.  From the “trail” of the blur, it is immediately 
apparent that the rotation is clockwise.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Screenshot showing a blurred car rotating 
about its central axis (rotational motion). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Screenshot showing the blurred car against a 
static background. 
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Quantitative comparison: 

We tested the implementation of our algorithm with a 
few practical methods of producing motion blur effect.   
The test model, again, is the “NVIDIA Rocket Car” and 
the implementation, without any effects, runs at a frame 
rate of 60fps.  The resolution was maintained at 512 x 
512 pixels. 

The practical method, as mentioned in Section 1 is to 
break a time interval into several sub-intervals and ac-
cumulating them using an accumulation buffer.  The 
speed of this method can be competitive only if the ac-
cumulation buffer is implemented in hardware.  A rou-
tine implementation using the accumulation buffer 
quickly produces very poor frame rates (less than 1) as 
more and more renderings per frame are done.  An alter-
native method is to render only one image per frame, 
and accumulate it with the current contents of the accu-
mulation buffer, thus effectively maintaining a “running 
sum” of all images drawn.  This method produces 49fps 
for the candidate model, and scales very well.  However, 
there is noticeable temporal aliasing and the ghosting 
images are very distracting.   

There are very few implementations of commodity 
graphics hardware that support an accumulation buffer, 
an example of which is the 3dfx Voodoo  
T-buffer. Examples of motion blur produced by the  
T-buffer can be seen at [12], which also show the tempo-
ral aliasing effects illustrated in figure 1.  In general, this 
method of rendering an object repeatedly does not scale 
well with the number of iterations of accumulation, nor 
with the polygon count of the scene because the object 
has to rendered more and more number of times, which 
lowers the frame rate to non-interactive values.  How-
ever, we implemented a variant of this method on the 
GeForce Quadro 4 graphics card to serve as a bench-
mark.  In this implementation, we rendered the car to 
texture several times in a frame and used alpha-blending 
to merge them. This essentially retains the flavour of the 
conventional accumulation buffer motion blur method.  
The comparison of this implementation with our warp-
ing-and-blending approach produced the following re-
sults: 

Iterations 
per 

frame 03 05 10 15 20 25 30 35 40 45 50 

A-buffer 
frame 
rate 29.7 20.1 9.4 7.03 5.04 4.25 3.43 3.04 2.61 2.37 2.01

Our 
frame 
rate 27.8 25.6 20.3 20.3 19.3 19.1 16.8 15.24 14.8 14.7 14.0
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The table shows the frame rates and quality of the im-
ages produced by the variant of the accumulation buffer 
implementation and our method in comparison.  We 
have chosen the visible distance between ghosts as the 
metric for quality of blur.  An image where images at 
discrete sub-intervals are visually inseparable shows a 
good blur.   

From the table and the adjoining graph, it can be clearly 
seen that our method scales very well as the number of 
iterations (deciding the quality of blur) increase.  This is 
attributed to two factors; the quasi-image-space nature of 
our method and the hardware acceleration. 

Limitations: 

There are some limitations to our current implementa-
tion.   

Firstly, the static background texture is a part of the 
normal image over which the line integral convolution is 
done.  Though this effect is not very noticeable, this 
blurs the background image in the vicinity of the moving 
object. 

Secondly, we follow the method of separating all mov-
ing and non-moving objects in a scene and merge them 
in the last step of our algorithm.  This potentially leads 
to either a merger of vector fields, which could produce 
incorrect motion blurs of two objects overlapping each 
other, or a separate pass for each moving object. 

As our method is image-based, the frame rate will lower 
if resolution of the scene is increased. 

6. Future Scope 
We feel our algorithm and implementation can be fur-
ther enhanced to produce more realistic and efficient 
motion blur. 
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The current implementation starts from the maximum 
warp and progresses towards the true final position of 
each pixel. A forward-warp approach could be imple-
mented, which reverses this direction. This approach 
could minimize the problem with non-manifold objects 
discussed in Section 4. Specifically, as the iterations 
proceed, we would move more towards the more blurred 
part, with decreasing values of alpha.  As such, the 
warping, which was causing some inner surfaces of non-
manifold object parts to pop out, would contribute lesser 
and lesser to the total blurred image.   

There are two extensions which could make our imple-
mentation even more efficient. Firstly, three texture 
offset lookups could be done in the texture shader, using 
three consecutive scaling factors on the same pair of 
textures, offset and RGB. Their blending can be done in 
a register combiners’ stage. This essentially decreases 
the number of passes of LIC to get the desired extent of 
blur. Secondly, we noticed that the step of forming the 
DSDT texture by manually downloading it from GPU 
memory, then shifting the offsets and uploading it back 
to texture memory forms the bottleneck of our imple-
mentation. Though innovative texture formats like 
DSDT_NV and its variations are provided, general reg-
ister instructions like expand cannot be used with them.  
We look forward to future, more flexible implementa-
tions of these formats.  We also look forward to any 
future, more efficient methods of generating a DSDT 
texture using RGB textures, which can currently be effi-
ciently generated using vertex shaders. 

Generating motion blur by an image warp-and-blend 
approach forms the heart of our idea and our algorithm.  
This can be achieved in several ways and different im-
plementations.  An alternative implementation to ours is 
to use a pixel shader to perform the iterative line integral 
convolution by texture offsets.  The current version of 
OpenGL does not support pixel shaders per se.  Future 
implementations of the CG compiler for the NVIDIA 
GeForce FX do promise to support  more advanced pixel 
due to which the entire LIC step could be pushed to the 
pixel shader stage. 

7. Conclusion 
As the power of consumer video cards increases, so does 
the complexity of virtual worlds. It is important to con-
sider how special effects will scale when applied to 
scene complexities approaching millions of triangles. 
Image-based techniques that render the geometry to 
textures and apply the effects to the textures will become 
of higher utility, since it may be faster than rendering the 
entire scene over again.  As texture shaders become 
more flexible and easier to program, we think we will 
see more advanced techniques where objects are ren-
dered to textures and processed before rendered to the 
screen. 
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Figure 8.  Comparison of the traditional accumulation buffer method and our motion blur method.  The number of it-
erations from left to right is  2 ,4 ,8 and 15.  The first row shows the output of the accumulation buffer method and the 
lower row shows output of our method. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.  Multiple moving objects in a single       Figure 10.  Zoom-on the blurred car shows  
Scene.  The car moves from right to left while     the background in the vicinity of the car  
The whole scene moves from left to right.  blurred with the car, as discussed in Section 5 


