
University of Minnesota Computer Science Department Technical Report 2003-01.

Hardware Accelerated Motion Blur Generation

Clement Shimizu, Amit Shesh, Baoquan Chen

{clement | ashesh | baoquan }@cs.umn.edu
University of Minnesota at Twin Cities

Abstract
Motion blur occurs in photography by the motion of objects during the finite exposure time that the cam-
era shutter remains open for to record the image on film. The traditional method of rendering a motion
blur with a computer is to render the scene at many discrete time instances in every frame. In this paper,
we present an efficient motion blur generation method that leverages modern commodity graphics hard-
ware. Our method avoids rendering the entire complex scene many times per frame. It first renders the
scene into a texture, next renders the optic flow, created based on object transformation, to a vector field
texture. The scene texture is finally efficiently blurred according to the vector field using texture-
mapping hardware to do a piecewise iterative line integral convolution. Though our method uses vertex
velocities to calculate image pixel velocities, the line integral convolution is performed on an image, mak-
ing our method largely independent of scene complexity.

Keywords:
Motion Blur, Line Integral Convolution, Image Warping, Offset Texture, Vertex Shader, Cg, Optic Flow

1. Introduction
In the virtual world of the computer, at discrete time
instances, objects are at discrete locations. When render-
ing the virtual world to a display device the world is
captured at one singular instant in time. As a result the
blur a camera or a human eye sees when viewing a rap-
idly moving object is absent. The blurring of the image
taken by a camera due to motion can be attributed to the
exposure of the camera film to light for an amount of
time in which an object moves a certain distance.

The traditional method of rendering a motion blur with a
computer is, for a single frame, to render the scene at
many discrete time instances, average these renderings
and output to the display device. To save space, the ren-
dering and averaging can be done in hardware using the
accumulation buffer [5]. However the quality of the
final output of each frame depends on the number of
renderings that are combined to make it. Since the whole
scene must be rendered multiple times, this method does
not scale well. If the number of polygons in the scene is
large, rendering the scene multiple times will lower the
frame rate. If the number of times a scene is rendered
per frame is too low for the amount of motion happening
in the scene, then instead of a smooth motion blur, the
rendering produces ghosting or double vision as seen in
figure 1. This effect is called temporal aliasing. A vir-
tual world with fast motion may need to be rendered up
to 20 times or more per frame to eliminate ghosting.
The 3dFx Voodoo5 6000 had 4 gpus and frame buffer
memory segments that could do a 4-step motion blur in
parallel. Although this can be done in parallel, there are

practical and intelligent approaches of performing the
same more efficiently and in less demanding ways.

Figure 1: Ghosting or temporal aliasing effect when the
motion blur of a fast moving object is generated using
accumulation buffer but large time interval between
multiple renderings.

In this paper, we present an efficient motion blur genera-
tion method which leverages modern commodity graph-
ics hardware. Our method avoids rendering the entire
complex scene many times per frame. It first renders the
complex scene to a texture, and then renders the optic
flow created based on object transformation to a vector
field texture. The scene texture is finally efficiently

2 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

 University of Minnesota Computer Science Department Technical Report 2003-01.

blurred according to the vector field using texture map-
ping hardware by performing piecewise iterative line
integral convolution [2]. After obtaining the image
pixel velocities from the vertex velocities, all operations
including the line integral convolution are done on an
image, making our method largely independent of scene
complexity.

The organization of this paper is as follows. Section 2
introduces previous work. Section 3 gives an overview
of our algorithm; and an efficient implementation of the
same is explained in Section 4. Finally we present re-
sults in Section 5 and offer discussions and future work
in Section 6.
2. Previous Work
The motion blur effect has often been addressed in com-
bination with solving the spatial aliasing problem. The
mathematical expression for the intensity of a pixel
I(x,y) on the screen is generalized by the equation:

∫∫
ΩΤ

= dtdwtLtRyxI),(),(),(ϖϖ (1)

where L(ω,t) is the incoming luminance function and
R(ω,t) is the reconstruction filter [13]. In this equation
smooth motion is reconstructed from a discrete set of
renderings (images) over time.

2.1. Solving Temporal Visibility and Shading:
Sung et al. [13] approach this problem in a very general
framework by solving the spatial-temporal aliasing prob-
lem. Their approach, though generic in nature, demands
significant hardware, both as memory and processing
power. The authors solve the two aliasing problems
separately by decomposing equation (1) into time and
spatial domains, and solving the spatial temporal visibil-
ity and spatial temporal shading problem separately, by
observing pixel coverage per object per time sample and
integrating over time and space.

2.2. Synchronization of Frame and Texture Fre-
quency:
There are some approaches, which solve the problem by
preventing its cause. Norton et al.’s method [9] limits
the frequency of texture functions to the pixel-sampling
rate [13]. This essentially matches the rendering fre-
quency with the motion frequency and removes jerki-
ness. However, this method requires prior knowledge of
motion.

2.3. Post-Processing Algorithms:
Post processing algorithms work in object space or im-
age space, keeping the interference of the motion blur
algorithm in the object-rendering algorithm to a mini-
mum.

2.3.1. Motion Blur by Time Convolution:
Potmesil and Chakravarty [11] promulgate an approach
of producing motion blur by time convolution of the
normal image with the motion function. This approach
works in image space, and is also capable of producing
images with moving and non-moving objects, by post-
processing the image of moving objects and blending it
with the image of non-moving objects. A Fourier trans-
form approach for time convolution is taken, which is
difficult to implement in current commodity graphics
hardware, although iterative time convolution in real
time is feasible.

2.3.2. Line Integral Convolution (LIC):
Convolution along a vector in the direction of motion
produces directional blur. This is the approach chosen by
Cabral and Leedom [2]. A line integral is used instead of
a piecewise linear approximation to express the direction
of motion. The vector field is created with this line inte-
gral, and the normal image is convoluted per pixel in the
direction of the corresponding vector in the vector field.
This approach, however, produces good effects only if a
dense, per-pixel vector map is available, which is as-
sumed in [2] as a preprocessing task.

2.3.3. Blurring by Image Interpolation:
Chen and Williams [1] present an image synthesis
method through view interpolation – a process of inter-
polating on a per pixel basis to produce novel images.
They discuss motion blur as one of the many effects
which can be produced by their approach. Their method
too, requires a dense per-pixel vector field.

The approach adopted in this paper is inspired by the last
two methods mentioned above. Thus, our approach
works in image space, and is a post-processing step.
Independently, Green [4] described a similar approach
that uses image warping by offsetting a texture to pro-
duce motion blur and uses fragment shaders.

3. Algorithm Overview
Our method is based on iteratively warping the image of
the object to be blurred and consecutively blending it
with the image produced by the earlier iteration. As will
be obvious in the implementation section, the algorithm
operates in image space. The algorithm is divided into
the following three steps and is summarized in figure 2:

3 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

University of Minnesota Computer Science Department Technical Report 2003-01.

Step 1: Creating Offsets:
The scene is assumed to be expressed as a collection of
polygons. As the scene is rendered, a per-vertex dis-
placement vector field is computed. This field stores the
vertex offset in the form of a three-dimensional vector,
which is used to warp the object. This vector is deter-
mined by two factors. Firstly, it is determined by the
relative directions of the vertex normal and the direction
of motion, because if a vertex is displaced along its nor-
mal, then it has to be maximally warped. This is so be-
cause motion in object space along the normal translates
to more movement of its projection in image space. Sec-
ondly, the offset is determined by the speed of motion,
which in this case, is indicated by the magnitude of the
velocity vector itself. Therefore, at every vertex, the
vector offset for warping is given by

 VvnW)(⋅= (2)

where n and v are the normal and velocity unit vectors
and V is the total velocity vector.

Step 2: Performing Line Integral Convolution:
The object is next warped on a per-vertex basis using the
offset vector field that was obtained in step 1. We start
with the maximum warp possible, and then move to-
wards the actual final position of the object. The maxi-
mum warp is determined by the relation between the
speed of the mouse which is used to move the object in
our implementation, and the actual speed it is simulat-
ing. This factor is a user-defined parameter. The warped
object is then alpha-blended with the original object, and
this blended object is used as the original object in the
next iteration. Blending is done with warps in directions
along and opposite to the vector field, but the latter is
done with a lesser scaling factor. The effect is that the
trailing edges of the objects are blurred more than the
leading, producing the typical blur trail. The alpha value
for blending increases as the amount of warp decreases.
This is intuitive because as the shape of the warped ob-
ject gets closer to the original shape of the object, pixels
that are a part of the warped object have a greater chance
of being a part of the object in its final position. This
iterative blending performs line integral convolution,
along the path of motion in a heuristic manner. The ex-
tent and quality of blur depend upon the number of itera-
tions over which LIC is carried out, and also on the dif-
ference between consecutive warps.

Step 3: Rendering the Final Blurred Image to
Screen:
The final blurred object is now rendered to the screen to
show the motion-blurred object.

Figure 2. An overview of the motion blur algorithm,
with screenshots taken at every step of the algorithm.

4. Implementation:
The main motivation of our work is to make the imple-
mentation as efficient as possible, using current com-
modity graphics hardware, and deferring as many opera-
tions as possible to the GPU during the conventional
image rendering. We have used the NVIDIA GeForce
Quadro 4 graphics card for our implementation; the
hardware features such as vertex and pixel shading ca-
pabilities that we use are common to other graphics
cards. For demonstration purposes, we embedded our
implementation into code obtained from [10]. This was
done solely to have a good object offering flexible ma-
nipulations as a starting point. Our candidate model, the
NVIDIA Rocket Car, has a polygon count of about
29000. The static background texture has been taken
from [6].

The current implementation blurs an object against a
background image, which is available as a texture. This
method can be generalized by making separate sets of
moving and non-moving objects in a preprocessing

4 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

 University of Minnesota Computer Science Department Technical Report 2003-01.

stage, and then merging them together in the blending
stage, as suggested in [11].

The vertex displacements are determined by a vertex
shader and are rendered to the framebuffer as pixel dis-
placements. Since the shader cannot render negative
offsets, we shift the range from (-1,1) to (0,1). Now, the
algorithm warps the object based on relative directions
of the velocity vector and the vertex normal. This may
violate visibility constraints if the object has non-
manifold parts. This is because, when the dot product
(n • v) < 0, no offset is generated. In non-manifold ob-
jects where two normals face each other, an inner face
may relatively pop out, giving an incorrect vector field.
To cure this anomaly, the vector field is rendered twice,
in warped and non-warped versions, and the union is
taken. These shifted vertex displacements are then read
into an array of RGB values, and are shifted to
(-0.5,0.5). The R and G values signify the x and y offsets
respectively, while the B component is neglected. To do
this, we rearrange the RGB values to R-G values. They
are then copied to a texture of DSDT_NV format. This
texture format stores texture offsets (ds,dt) at texel loca-
tion (s,t).

Figure 3. A visualization of the offset vector field,
showing red color for displacements along X direction,
and green color for displacements along Y direction.

The original object is rendered to a texture, using a pixel
buffer. Thus, all operations henceforth are performed on
textures in image space. Warping is produced by passing
these two textures (original RGB and offset DSDT) to a
texture shader. In order to produce a warping effect, the
texture shader performs a scaled offset lookup based on
the DSDT texture and the warp factor (the scale), in the
RGB texture. The RGB texture is then alpha blended
with the warped texture to form the new RGB texture for
the next warp-and-blend iteration. The alpha function

can be set to gaussians or ramps to obtain varying kinds
of blur. This blending is done with a pixel buffer as the
rendering context, due to which, the blended image
automatically becomes available as a texture. Successive
lesser warps are produced by manipulating the warp
factors in the texture shader. When all iterations of LIC
are done, the rendering context is switched back to the
framebuffer, and this final texture is simply rendered on
it to show the blurred object.

The following table summarizes the various operations
and where they are implemented (CPU or GPU):

Operation Performed by/on

Generating the vector offsets Vertex shader (GPU)

Adjusting offsets and creating
DSDT texture CPU

Rendering object as an image Pixel Buffer (GPU)

Warping Texture shader(GPU)

Blending Pixel Buffer (GPU)

For demonstration purposes, some additional computa-
tions are performed to render an optic-flow vector field
to show the direction of motion as seen by the vertices
(see figure 4).

Figure 4. A visualization of the optic flow vector field.
The blue start point of the flow shows the original tex-
ture coordinate, and the red end point of the flow shows
the texture coordinate looked up after applying the offset
found in the DSDT texture.

5 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

University of Minnesota Computer Science Department Technical Report 2003-01.

5. Results:
For demonstration purposes, our implementation pro-
duces a main picture and five thumbnails, as shown in
figures 5 and 6.

From left to right, the thumbnails show: the original
object, the offset-vector field (with red color for motion
in X direction and green color for motion in the Y direc-
tion for visualization purposes), the object warped by the
offset field, the optic flow vector field and the final
blurred object.

Figure 5. Screenshot showing a blurred car moving
in the horizontal direction (pure translatory motion)

Figure 5 shows a screenshot of the motion blur produced
by our implementation for pure translatory motion. The
“red” offset vector field in thumbnail 2 shows that this is
a motion only along X axis, as is further evidenced by
the optic flow vector field in thumbnail 4. The user
defined parameter for actual speed simulation (refer to
Section 3.2) is set to simulate high speed, justifying the
significant blur.

Figure 6 shows a screenshot of the motion blur produced
for rotational motion. The varying colors in the vector
field show the various directions in which each vertex
moves. From the “trail” of the blur, it is immediately
apparent that the rotation is clockwise.

Figure 6. Screenshot showing a blurred car rotating
about its central axis (rotational motion).

Figure 7. Screenshot showing the blurred car against a
static background.

6 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

 University of Minnesota Computer Science Department Technical Report 2003-01.

Quantitative comparison:

We tested the implementation of our algorithm with a
few practical methods of producing motion blur effect.
The test model, again, is the “NVIDIA Rocket Car” and
the implementation, without any effects, runs at a frame
rate of 60fps. The resolution was maintained at 512 x
512 pixels.

The practical method, as mentioned in Section 1 is to
break a time interval into several sub-intervals and ac-
cumulating them using an accumulation buffer. The
speed of this method can be competitive only if the ac-
cumulation buffer is implemented in hardware. A rou-
tine implementation using the accumulation buffer
quickly produces very poor frame rates (less than 1) as
more and more renderings per frame are done. An alter-
native method is to render only one image per frame,
and accumulate it with the current contents of the accu-
mulation buffer, thus effectively maintaining a “running
sum” of all images drawn. This method produces 49fps
for the candidate model, and scales very well. However,
there is noticeable temporal aliasing and the ghosting
images are very distracting.

There are very few implementations of commodity
graphics hardware that support an accumulation buffer,
an example of which is the 3dfx Voodoo
T-buffer. Examples of motion blur produced by the
T-buffer can be seen at [12], which also show the tempo-
ral aliasing effects illustrated in figure 1. In general, this
method of rendering an object repeatedly does not scale
well with the number of iterations of accumulation, nor
with the polygon count of the scene because the object
has to rendered more and more number of times, which
lowers the frame rate to non-interactive values. How-
ever, we implemented a variant of this method on the
GeForce Quadro 4 graphics card to serve as a bench-
mark. In this implementation, we rendered the car to
texture several times in a frame and used alpha-blending
to merge them. This essentially retains the flavour of the
conventional accumulation buffer motion blur method.
The comparison of this implementation with our warp-
ing-and-blending approach produced the following re-
sults:

Iterations
per

frame 03 05 10 15 20 25 30 35 40 45 50

A-buffer
frame
rate 29.7 20.1 9.4 7.03 5.04 4.25 3.43 3.04 2.61 2.37 2.01

Our
frame
rate 27.8 25.6 20.3 20.3 19.3 19.1 16.8 15.24 14.8 14.7 14.0

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Iterations

Fp
s

LIC Motion Blur A-Buffer Blur

The table shows the frame rates and quality of the im-
ages produced by the variant of the accumulation buffer
implementation and our method in comparison. We
have chosen the visible distance between ghosts as the
metric for quality of blur. An image where images at
discrete sub-intervals are visually inseparable shows a
good blur.

From the table and the adjoining graph, it can be clearly
seen that our method scales very well as the number of
iterations (deciding the quality of blur) increase. This is
attributed to two factors; the quasi-image-space nature of
our method and the hardware acceleration.

Limitations:

There are some limitations to our current implementa-
tion.

Firstly, the static background texture is a part of the
normal image over which the line integral convolution is
done. Though this effect is not very noticeable, this
blurs the background image in the vicinity of the moving
object.

Secondly, we follow the method of separating all mov-
ing and non-moving objects in a scene and merge them
in the last step of our algorithm. This potentially leads
to either a merger of vector fields, which could produce
incorrect motion blurs of two objects overlapping each
other, or a separate pass for each moving object.

As our method is image-based, the frame rate will lower
if resolution of the scene is increased.

6. Future Scope
We feel our algorithm and implementation can be fur-
ther enhanced to produce more realistic and efficient
motion blur.

7 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

University of Minnesota Computer Science Department Technical Report 2003-01.

The current implementation starts from the maximum
warp and progresses towards the true final position of
each pixel. A forward-warp approach could be imple-
mented, which reverses this direction. This approach
could minimize the problem with non-manifold objects
discussed in Section 4. Specifically, as the iterations
proceed, we would move more towards the more blurred
part, with decreasing values of alpha. As such, the
warping, which was causing some inner surfaces of non-
manifold object parts to pop out, would contribute lesser
and lesser to the total blurred image.

There are two extensions which could make our imple-
mentation even more efficient. Firstly, three texture
offset lookups could be done in the texture shader, using
three consecutive scaling factors on the same pair of
textures, offset and RGB. Their blending can be done in
a register combiners’ stage. This essentially decreases
the number of passes of LIC to get the desired extent of
blur. Secondly, we noticed that the step of forming the
DSDT texture by manually downloading it from GPU
memory, then shifting the offsets and uploading it back
to texture memory forms the bottleneck of our imple-
mentation. Though innovative texture formats like
DSDT_NV and its variations are provided, general reg-
ister instructions like expand cannot be used with them.
We look forward to future, more flexible implementa-
tions of these formats. We also look forward to any
future, more efficient methods of generating a DSDT
texture using RGB textures, which can currently be effi-
ciently generated using vertex shaders.

Generating motion blur by an image warp-and-blend
approach forms the heart of our idea and our algorithm.
This can be achieved in several ways and different im-
plementations. An alternative implementation to ours is
to use a pixel shader to perform the iterative line integral
convolution by texture offsets. The current version of
OpenGL does not support pixel shaders per se. Future
implementations of the CG compiler for the NVIDIA
GeForce FX do promise to support more advanced pixel
due to which the entire LIC step could be pushed to the
pixel shader stage.

7. Conclusion
As the power of consumer video cards increases, so does
the complexity of virtual worlds. It is important to con-
sider how special effects will scale when applied to
scene complexities approaching millions of triangles.
Image-based techniques that render the geometry to
textures and apply the effects to the textures will become
of higher utility, since it may be faster than rendering the
entire scene over again. As texture shaders become
more flexible and easier to program, we think we will
see more advanced techniques where objects are ren-
dered to textures and processed before rendered to the
screen.

8. Acknowledgements
This work was supported in part by the Army High Per-
formance Computing Research Center under the aus-
pices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAD19-
01-2-0014. Its content does not necessarily reflect the
position or the policy of this agency, and no official
endorsement should be inferred. Other support has in-
cluded a Computer Science Department Start-Up Grant
and a Grant-in-Aid of Research, Artistry, and Scholar-
ship from the Office of the Vice President for Research
and the Dean of the Graduate School, all from the Uni-
versity of Minnesota.

9. References
1. CHEN S. E., WILLIAMS L., “View Interpolation for

Image Synthesis”, Apple Computer Inc.
2. CABRAL B., LEEDOM L. C., “Imaging Vector Fields

Using LINE Integral Convolution”, Proceedings of
SIGGRAPH 1993, pp. 264.

3. DIGIBEN., Motion Blur, In OpenGL Game Tuto-
rials
http://www.gametutorials.com/Tutorials/opengl/O
penGL_Pg2.htm

4. GREEN SIMON, “Stupid OpenGL Shader Tricks”,
Game Development Conference 2003.

5. HAEBERLI P., AND AKELEY K., “The Accumulation
Buffer: Hardware Support for High-Quality Ren-
dering”, SIGGRAPH 1990, pp. 309-318.

6. LIGHT PROBE IMAGE GALLERY
http://www.debevec.org/Probes/

7. MCREYNOLDS T., 1998, Advanced Graphics Pro-
gramming Techniques Using OpenGL, In Sig-
graph Courses 1998, Using OpenGL to perform
Line Integral Convolution(LIC) images.
HTTP://WWW.SGI.COM/SOFTWARE/OPENGL/ADVANC
ED98/NOTES/NODE59.HTML

8. MITCHELL, D.P., “Generating Antialiased Images
at Low Sampling Densities”, Computer Graphics,
vol. 21, no. 4, pp. 65-72, July 1987.

9. NORTON A., ROCKWOOD A.P., AND SKOLMOSKI
P.T, “Clamping: A Method of Antialiasing Tex-
tured Surfaces by Bandwidth Limiting in Object
Space”, Computer Graphics, vol. 16, no. 3, pp. 1-
8, July 1982.

10. NVIDIA Developers’ Website
http://developer.nvidia.com

11. POTMESIL M. AND CHAKRAVARTY I., “Modeling
Motion Blur in Computer-Generated Images”,
Computer Graphics, Vol. 17, no. 3, pp. 389-399,
July 1983.

12. PREVIEWS OF THE VOODOO 3DFX T-BUFFER
http://www.hardwarecentral.com/hardwarecentral/
previews/1646/3/.

13. SUNG K., PEARCE A. AND WANG C., “Spatial-
Temporal Antialiasing”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 8,
April-June 2002

8 Shimizu, Shesh, Chen /Hardware Accelerated Motion Blur Generation

 University of Minnesota Computer Science Department Technical Report 2003-01.

Figure 8. Comparison of the traditional accumulation buffer method and our motion blur method. The number of it-
erations from left to right is 2 ,4 ,8 and 15. The first row shows the output of the accumulation buffer method and the
lower row shows output of our method.

Figure 9. Multiple moving objects in a single Figure 10. Zoom-on the blurred car shows
Scene. The car moves from right to left while the background in the vicinity of the car
The whole scene moves from left to right. blurred with the car, as discussed in Section 5

