
OmniMap: Projective Perspective Mapping API
for Non-planar Immersive Display Surfaces

Clement Shimizu, Jim Terhorst, and David McConville

The Elumenati, LLC

Abstract. Typical video projection systems display rectangular images
on flat screens. Optical and perspective correction techniques must be
employed to produce undistorted output on non-planar display surfaces.
A two-pass algorithm, called projective perspective mapping, is a solution
well suited for use with commodity graphics hardware. This algorithm
is implemented in the OmniMap API providing an extensible, reusable
C++ interface for porting 3D engines to wide field-of-view, non-planar
displays. This API is shown to be easily integrated into a wide variety
of 3D applications.

1 Introduction

Artists, architects, and engineers have long attempted to understand and sim-
ulate spatial perspective as perceived by the human visual system. This quest
is widely associated with the formal development of linear perspective from the
15th century onwards that became the hallmark of European Renaissance paint-
ing. These mathematically derived techniques forced an artificial projection of
three-dimensional scenes onto a two-dimensional plane, requiring that the ex-
perience of perspective be based on the metaphor of peering through a planar
window from a single point.

Numerous attempts have been made to define a “natural” non-planar and
panoramic perspective that more closely mimics the visual field of view. Leonardo
da Vinci illustrated the divergence between artificial linear perspective and a
more natural non-planar perspective[1], and numerous artists have since turned
to curvilinear and hemispherical architectural forms as canvases upon which to
portray visual depth. Development of both optical and mathematical techniques
for representing perspective within cathedrals, panoramic exhibits, planetaria,
flight simulators, and surround cinema laid the groundwork for contemporary
visually immersive display technologies[2, 3].



2 Clement Shimizu, Jim Terhorst, and David McConville

Though hemispherical and panoramic screens have long been used to sur-
round audiences with imagery, their cost, complexity, lack of standards[4], and
size requirements have limited their widespread adaptation. The use of panoramic
and multi-screened virtual reality environments requiring multiple front and rear
projectors have largely been limited to academic and corporate research and mil-
itary training applications. However, recent advancements in graphics processing
power, surround projection technologies, and material construction techniques
are enabling the adoption of non-planar immersive virtual environments for a
broad range of artistic, scientific, educational, and entertainment applications.
Though many of the core technologies have been available for decades[5], a new
generation of portable dome and panoramic systems as well as permanent digital
“fulldome” theaters are providing relatively simple and cost-effective methodolo-
gies for visually immersing participants inside of computer-generated imagery
using a single projector and image generator.

The OmniMap application programming interface (API) has been designed
to enable existing interactive 3D software applications to be adapted for use
within these wide field-of-view non-planar displays. It uses object-oriented tech-
niques to enable extensibility, configurability, and reusability so that the mini-
mum amount of effort is required for this adaptation. It is freely available on the
web at [6] and has been integrated into a variety of 3D toolkits, programming
environments and applications based on Direct3D9, Direct3D10, and OpenGL.
This paper describes the algorithm employed to produce the correct viewing per-
spective output on non-planar display surfaces, the software architecture that
supports the extensibility, configurability, and reusability, and the integration of
the OmniMap API into various software applications.

The cover shot shows OmniMap integrated into SCISS AB’s Uniview for re-
altime visualization of the universe (left). An OmniFocus projector sits alongside
a star ball to update a planetarium’s scientific visualization capabilities (right).

The next section provides an overview of various techniques used to produce
imagery for non-planar immersive projection systems, including a two pass tech-
nique well suited for implementation on modern graphics hardware. Although
various forms of the two pass algorithm have been used in many immersive com-
puter graphics systems, the details have never been adequately described in the
literature. This paper formalizes the algorithm in Section 3. Section 4 provides
the implementation details of the OmniMap API needed to reproduce, utilize,
and extend the technique. Finally, the flexibility and extensibility of the Omn-
iMap API is evidenced by the successful integration into many applications and
SDKs in Section 5.

2 Background

There are currently three primary approaches for rendering projections on non-
planar surfaces: ray tracing, quadric surface transfer, and a two-pass rendering
method. When projecting images onto non-planar display devices, ray tracing is
the most straightforward approach. First, rays are cast from the projector to the



Lecture Notes in Computer Science 3

screen’s surface to compute the optical warping of the screen. From the viewer’s
position rays are cast through this intersection point into the scene to compute
the final image. Because of computational requirements of raytracing, this only
works for content that can be rendered offline.

Quadric surface transfer (QST) is a popular rendering technique to create
large seamless curved displays using overlapping projectors[7–9]. QST systems
typically need to use many projectors to cover a curved surface, rendering at very
high resolution. The rendering phase for QST runs in a single pass, but that pass
is run on each projector, so the implementation typically uses a computer for each
projector. The greatest draw back of QST systems is the requirement for highly
tessellated objects since major artifacts result if objects are not finely tessellated.
Because either the application’s 3D content needs to be re-tessellated offline or
dynamically re-tessellated, QST is not yet practical as a general-purpose per-
spective correction library using commodity graphics processing units.

The two-pass rendering method is well suited for use with commodity graph-
ics hardware since the scene does not need to be retesselated and is compatible
with all versions of OpenGL and DirectX that support vertex and pixel shading.
The first pass renders the scene into a set of off-screen textures, a method sim-
ilar to generating cubic environment maps. The second pass renders and warps
the screen surface and maps the textures to it using projective texturing. This
is commonly used to correct perspective for immersive displays, including the
OmniMap API. It has also been used within Elumens’ SPIClops API for fish-
eye projection[10, 11], Paul Bourke’s Spherical Mirror Projection[12], and the
University of Minnesota’s three-projector panoramic VR Window[13]. An early
reference to a related two pass technique is found in [14].

As graphics processing power and projector resolution has increased, the two-
pass rendering technique offers a method for taking advantage of simplified and
lower-cost immersive projection systems. The OmniMap API has been devel-
oped to provide an extensible, reusable C++ interface that can be adapted to
existing, and future commodity graphics hardware and most 3D software engines
regardless of the type and level of abstraction. Although various forms of the two
pass algorithm have been used in many immersive computer graphics systems,
the details have never been adequately described in the literature. This paper
formalizes the algorithm and provides the implementation details needed to re-
produce, utilize, and extend the technique. In order to thoroughly describe the
algorithms and implementations associated with the two pass rendering method,
this paper proposes that it be named projective perspective mapping.

3 Projective Perspective Mapping

Typical video projection systems display rectangular images on flat screens. Op-
tical and perspective correction techniques must be employed to produce undis-
torted output on planetariums, domes, panoramas, and other non-planar display
surfaces. In this section we describe the methodology derived by the authors for
projective perspective mapping which facilitates interactive perspective correct



4 Clement Shimizu, Jim Terhorst, and David McConville

Pa
ss

 1
: G

en
er

at
e 

Pe
rs

pe
ct

iv
e

Pa
ss

 2
: M

ap
 P

er
sp

ec
tiv

e

Application’s Virtual Environment

→

Render Perspectives

Use projective texturing to map channels

Screen Mesh

Optical Correction 

MT1 MT2

MT3

MO1 ,MP1

MO2 ,MP2

MO3 ,MP3

Fig. 1. Projective perspective mapping generates the user’s perspective by rendering
the scene into a subset of cube map faces, then uses projective texturing to map
the perspective onto a optically corrected screen surface mesh. MOi , MPi , and MTi

represent the view offset, projection, and projective texturing matrices for each channel

rendering into a wide frustum, non-planar surface. Although projective perspec-
tive mapping is capable of serving many projection system types, this discussion
is focused on a specific class of projection systems with wide field of view optics
similar to a fisheye lens.

Section 3.1 discusses the unique properties of the projector. Section 3.2 de-
scribes the algorithm’s first pass where channels (cube faces) are rendered into
off screen frame buffers (frame buffer objects or render textures). Section 3.3
describes the second pass, where a mesh representing the projection surface is
rendered and warped using a vertex shader to account for the spherical pro-
jection of the wide field of view optics, and painted in using projective texture
mapping. Figure 1 illustrates the flow of the algorithm.



Lecture Notes in Computer Science 5

Centered

Truncated

Fulldome

Fig. 2. A fisheye lens replaces a projector’s stock lens. Lens offset configurations (right)

3.1 Projection System

The projector shown in Figure 2 is an OmnifocusTMHAL-SX6 color projector
with 6500 lumens brightness and 1400 x 1050 resolution. The stock lens from
Christie has been removed and replaced with a custom wide field of view lens
from The Elumenati, LLC. If the lens is centered on the projector’s DMD panel,
it projects 180◦ along the horizontal axis and a 135◦ along the vertical axis,
Figure 2 (right, top). The lens is offset vertically relative to the center of the
DMD panel to optimize pixel usage in projection. The resultant projected FOV
is ±90◦ horizontal and +90◦, −45◦ vertical (middle). “Full dome” lenses are
available that project 180◦ in both the vertical and horizontal axis (bottom).

Most fisheye lenses tend toward an “fθ” pixel distribution where the pixel
projection angle is linearly related to the pixels distance from the lens optical
axis. This means that the angle to which a specific pixel is projected is linearly
proportional to its distance from the optical axis. The result is an equiangular
pixel distribution across the entire projected field. Rectilinear projectors typ-
ically have an f tan(θ) angular pixel distribution. In addition, if the fθ lens
is centered in a dome, it will project with uniform brightness across the entire
screen surface. If possible, avoiding brightness uniformity corrections is beneficial
because they inevitably reduce screen’s overall brightness and contrast.

While the extremely wide projected field of view allows a single projector
to cover almost any screen shape, the nearly infinite depth of field allows the
image to remain in focus. In optics a common rule of thumb is that for a lens
of focal length f an object that is ≥20f away is essentially infinitely far away.
Reversing this rule for projection, if the screen is ≥20f away from the lens the
image will always be in focus. The fisheye used in this system has a focal length
of 6mm. The extremely short focal length is a byproduct of the extremely wide
FOV of the fisheye lens design. This allows the projector to be placed anywhere
in relation to a screen of arbitrary shape (dome, cylinder, etc) and still maintain
focus on the entire screen as long as the nearest point is at least 12 cm away.



6 Clement Shimizu, Jim Terhorst, and David McConville

3.2 First Pass - Generating the User’s Perspective

Through the two-pass algorithm described next, projective perspective mapping
takes into account the prescription of the optics described above, the shape of the
screen and the position of the viewer within its algorithm in order to facilitate
the generation of the correct image at the projector’s image plate.

The initial pass generates the user’s perspective by rendering the scene into
faces (called render channels) of a cube-map like structure. A cube map with
sufficient resolution can perfectly represent any view of the scene from a single
vantage point. The scene is rendered through a subset of the faces of a cube.
The n faces are chosen so as to fill the display surface with imagery from the
perspective of the sweet spot of the audience. For each channel i, a view offset
matrix MOi

is computed representing the offset from the default view to the view
through the cube map face. This matrix also stores translational offset of the
audience sweet-spot. The perspective projection matrix MPi

is also needed for
each channel. The use of these matrices are the only change to the application’s
rendering loop. The scene’s geometry does not need to be re-tesselated.

In the case of an upright dome, three channels are required to fill the display
surface. The frustum and view offset rotation for each of those channels needs to
be computed. If channel 1 is the left view, the matrix MT1 is a 45◦ rotation to
the left. Channel 2’s matrix MT2 , the right view, is a 45◦ rotation to the right.
The top channel’s matrix MT3 would rotate and twist the view to capture the
view through the top face of a cube. The perspective projection matrix MPi

for
each channel is set to have a symmetric 90◦ FOVs and a near and far clip plane
suitable for the scene. In the case where the optimal viewing position is not
placed at the center of the dome, the ideal channel frustums may be asymmetric
and greater than 90◦. Asymmetric frustums enables an optimal frustum size,
saving rendering time if the application is implementing frustum culling.

3.3 Second Pass - Mapping the views to the Display Surface

In the second pass, a mesh representing the projection surface is drawn with
vertex and fragment shaders. First, the screen surface mesh is warped using
the vertex shader, to account for the spherical projection of the wide field of
view optics. Then, the channels rendered in the first pass are used as projective
texture maps in the fragment shader to fill in the display surface.

Vertex Shader - Optically Correcting the Non-planar Display

Since the fθ lens causes the screen surface to be projected as spherically into
the environment rather than rectangularly, the vertex shader is used to warp the
screen surface from world space to spherical projection space. The screen mesh
is tessellated to accommodate the warping. This allows the polygonal mesh of
screen surface to be rendered in such a way that it lines up with the physical
screen surface when projected through the spherical lens. This mapping is specific
to the optics of the projection system. Although projective perspective mapping



Lecture Notes in Computer Science 7

is capable of all types of projection systems, we work though the math for only
the fθ optics. Calibration for rectangular projectors have been covered in [13]
while mirror ball has been covered in [12]. This optical technique was published
in the context of a rear projected, motion tracked, flexible screen in [15].

In the vertex shader, the world location of each vertex (x, y, z) is converted
into spherical space (ϕ, r). z is defined as the axis parallel with the projector’s
direction. d is the distance between the vertex and the projector. In Equation 2,
the vector ϕ is a unit length vector in screen space. Equation 1 computes its
magnitude as r. Screen pixel coordinates (x′, y′) are computed by Equation 3.
Finally, the z-depth is simply set to d.

r =
2
π

cos−1
(z
d

)
(1)

ϕ =
(
x/
√
x2 + y2, y/

√
x2 + y2

)
(2)

(x′, y′) = r ∗ ϕ (3)

A slight modification needs to be made for fisheye lenses that have a have a
non-uniform pixel distribution. To do this, a low order polynomial is fit to the
mapping of the specific lens’s distribution to an fθ distribution. The lens cor-
rection for standard, non-fisheye projector optics is covered in [13].

Fragment Shader - Mapping the User’s Perspective to the Display

The fragment shader now fills in the display surface with the channels rendered
in the first pass, using projective texturing. Projective texturing was invented
as a technique for rendering shadows onto curved surfaces, but was extended
to simulate the effect of a using a slide projector to project images onto curved
surfaces[16]. A tech report on the subtle details of implementing hardware ac-
celerated projective texturing can be found in [17].

The projection of the texture requires that the shaders calculate texture
coordinates into the rendered channels drawn in the first pass for each pixel
on the screen surface. These texture coordinates are calculated by applying a
transform matrix to the vertex coordinate. For each channel i, the transform
matrix MTi

is computed from the projection and offset matrices used to generate
the channel (Equation 4). The matrix MS is a scale bias matrix for mapping
coordinates from [−1, 1] to the texture coordinate domain [0, 1]. The texture
coordinates (s/q, t/q) are computed for every channel by multiplying the vertex
position (x, y, z) with the offset matrix (Equation 5).

MTi
= MOi

∗MPi
∗MS (4)(

s, t, r, q
)T = MTi

∗
(
x, y, z, 1

)T (5)

If the screen surface is completely covered by the render channels from the sweet
spot of the audience with no overlap, only one of the n texture coordinates will
be valid for any pixel. The texture coordinates is valid if and only if (si, ti) is
within the range [0, 1]2. The texture coordinate of the valid channel is used to
index into the texture to retrieve the final color value for that fragment.



8 Clement Shimizu, Jim Terhorst, and David McConville

OmniMap_Base

OmniMapChannel_Base

OmniMap

OmniMapD3D

OmniMapD3d10

OmniMapAppTextureOGL

OmniMapAppD3DTexture

OmniMapAppD3D10Texture

OmniMapChannel

OmniMapChannelD3D

OmniMapChannelD3D10

OmniMapChannelATOGL

OmniMapChannelATD3D

OmniMapChannelATD3D10

OmniMapShader_Base

OmniMapShader

OmniMapShaderD3D

OmniMapShaderD3D10

OmniMapScreen_Base

OM_DomeScreen

OM_CylinderScreen

OM_ToroidScreen

ScreenRenderer_Base

ScreenRendererOGL

ScreenRendererD3D

ScreenRendererD3D10

OmniMapScreenShapeFactory

OmniMapScreenRendererFactory

Fig. 3. Classes supporting specific graphics APIs like OpenGL (shown in green),
Direct3D9 (light blue), and Direct3D10 (deep blue) are derived from graphics
API independent (shown in gray) base classes. OmniMap Base, OmniMapChannel Base,
OmniMapShader Base and ScreenRenderer Base need to be derived to incorporate
the API specific function calls. For application supplied texture support, only
main class, and channel classes needed to be derived. The shader and screen
renderer classes were reused for the application supplied texture implementa-
tions. OmniMapScreenShapeFactory creates and manages OmniMapScreen Base deriva-
tions, and OmniMapScreenRendererFactor creates and manages ScreenRenderer Base

derivations

4 OmniMap API Architecture

This section describes the OmniMap API architecture with an overview of the
API and then a description of the functionality of the base classes and their
derivations. The OmniMap API provides a framework to enable 3D applica-
tion, game engine, and toolkit developers to implement rendering to immersive,
non-planar displays. The base classes contain the information and utility access
methods necessary to implement the algorithm. Derivations of the base classes
provide the implementation details for specific rendering APIs and frameworks.
The authors have derived the base classes to implement the algorithm for the
OpenGL, Direct3D9, and Direct3D10 APIs, and some application architectures
can use these implementations “out-of-the-box”. However, the extensibility of
OmniMap affords developers the opportunity to adapt OmniMap to the frame-
work of existing applications, toolkits or game engines. Toolkit and game engine
developers can derive reusable classes from the OmniMap base classes, thus pro-
viding OmniMap functionality to application developers using their toolkit or
game engine. OmniMap does not intend to provide the details of implementa-
tion for every conceivable software architecture, but instead provides the basic
building blocks to enable developers to implement the algorithm with the least
effort.



Lecture Notes in Computer Science 9

4.1 OmniMap API Classes

In this section, the support for the Projective Perspective Mapping algorithm in
the OmniMap base classes is described, followed by an explanation of how these
classes can be derived to implement the algorithm. The object oriented design
of OmniMap enables runtime configurability of many properties of the display
and software environment. These classes are designed such that derivations can
implement the algorithm for:

1. Low and high level graphics APIs: OpenGL, DirectX, Orgre3D, etc.
2. Various shader languages, and shader loading/compiling APIs
3. Various screen shapes

OmniMap Base: This is an abstract class for deriving classes that man-
age the two-pass algorithm. It owns the channel, shader, and screen objects. It
directs the rendering of the second pass in which the channel content is com-
posited to the display surface. It can be derived to implement the algorithm for
different rendering engines, and has been derived to implement Direct3D and
OpenGL. The base class provides functionality that is common to all derived
implementations including:

1. Channel management
2. Creation, and storage of the matrix transforms that represent the position

and orientation of the projector.
3. Screen shape factory[18], screen management, screen renderer factory, screen

renderer management, and invocation of screen rendering.
4. Utility methods for calling the list of channels to bind and unbind their

respective textures. This method is used during the second pass to bind the
channel textures to texture units for access by the shader.

5. Utility methods for executing Lua scripts, which are used primarily for con-
figuration.

OmniMap Base has two object factories, one for the creation of screen shapes
(see OmniMapScreen Base below), and one for the creation of screen renderers.
These factories allow for new screen shapes, and screen renderers to be created
and added at run time.

OmniMap Base uses a Lua scripting facility to initialize itself with the pre-
ferred configuration[19]. The Lua script file is executed by the base class. The
script then calls back into the OmniMap Base class through a Lua to C++ inter-
face mechanism[20]. These calls provide the OmniMap object with configuration
information including:

– Number of channels to be rendered, their resolution, and projection parame-
ters that define how those channels are composited onto the display surface.

– Underlying Graphics API to be used for rendering
– Shader programs to be used for vertex warping and channel projection
– Position and orientation of the projector, and optimal viewing position



10 Clement Shimizu, Jim Terhorst, and David McConville

OmniMap includes configuration scripts for standard dome configurations shipped
by Elumenati, Inc. The Lua scripting facility is available to derived classes via
a protected member of each base class.

The OmniMap API base classes are free of any code that is graphics API de-
pendent. The design allows implementations of the perspective mapped surface
display algorithm for high (Ogre3D, OpenSceneGraph) and low level graphics
APIs (OpenGL, Direct3D9 and Direct3D10) to leverage the base functionality,
minimizing the efforts required for those implementations. Derived implementa-
tions of OmniMap Base must implement the CreateChannel and PostRender
methods. The CreateChannel method creates the appropriate derivation of
OmniMapChannelBase for the derived implementation. PostRender implements
the second pass of the algorithm Specifically, shader loading and parameter set-
ting, and display surface rendering.

The OmniMap API also provides support for applications that supply their
own render textures. This support is useful for toolkits that already have a
facility for rendering to textures. For instance, OmniMapAppTextureOGL, and
OmniMapChannelATOGL implement this functionality for OpenGL applications.

OmniMapChannel Base: This is the abstract class for channel implemen-
tation. It is intended to be derived along with OmniMap Base to support a spe-
cific rendering API or framework. Its purpose is to provide the mechanism for
rendering to an offscreen buffer that acts as a texture, and to provide the ma-
trices for setting up the channel’s viewing offset. Hence, this class owns the
position/rotation offset matrix and the projection matrix for the channel. The
OmniMapChannel Base class supports asymmetric frustums.

OmniMapScreen Base: This is the abstract class for implementing display
surface shapes. Derived classes simply define vertex buffers that represent the
geometry of the display surface. The screen geometry is rendered with classes
derived from the ScreenRendererBase class. This class is defined such that
the derived classes can be implemented independent on the underlying graphics
API. So, a screen shape can be defined once, and used by any derivations of
the OmniMap classes, as well as any game engine or toolkit implementations.
Derivations that implement specific screen shapes are responsible for tessellating
the shape into triangles and notifying the screen renderer of the contents of that
shape.

ScreenRenderer Base: This is the abstract class for defining screen render-
ers. Screen renderers are responsible for rendering the shapes defined by deriva-
tions of OmniMapScreen Base. Derived classes are graphics API dependent. So
there are derived classes for OpenGL, Direct3D9, and Direct3D10 rendering.
The derived classes simply render the vertex buffers defined by classes derived
from OmniMapScreen Base class.

OmniMapShader Base: This is the abstract class for implementing shader
support. Derived classes are responsible for loading/unloading, compiling, and
setting parameters in shaders.



Lecture Notes in Computer Science 11

Fig. 4. Michael Somoroff’s Illumination features a downward-facing projector filling
a 120◦ wrap-around panoramic display. A custom video player was created using Om-
niMap to take the high resolution panoramic frames (top) and warp them for projection
onto the inside of a 120◦ cylindrical display (bottom left). OmniMap produces a dra-
matically warped but optically correct horseshoe shaped image (bottom middle) that
is projected into the final installation (bottom right)

5 Conclusion

As advances in graphics processing power, surround projection technologies, and
material construction techniques enable proliferation of non-planar immersive
display devices, demand for content accelerates. The authors conclude that a
library for integrating the wide variety of existing interactive 3D software ap-
plications into these venues is a necessity and should be freely available. The
OmniMap API is free for non-commercial use, runs on OSX and Windows. The
OmniMap API provides a simple way for software developers to implement ren-
dering into non-planar immersive display surfaces. This is evidenced by the suc-
cessful integration of OmniMap into the following applications and SDKs:
– Applications

• GeoFusion, Inc. GeoPlayer : Geospatial Visualization
• Google’s Sketchup : 3D Modeling.
• SCISS Uniview : Astronomy Visualization
• Apple’s Quartz Composer : Interactive, Visual Programming Language
• Linden Lab’s Second Life Viewer : On Line Virtual World
• VidVox’s VDMX : Realtime Video Mixing and Effects Software
• Cycling ’74’s MaxMSP : Realtime Video Mixing and Effects Software

• Elumenati Video Player : High Def Codec for mono/stereo videos (Fig. 4.)

– SDKs
• OpenSceneGraph 3D Toolkit
• Unity 3D Game Engine

• Ogre 3D Game Engine



12 Clement Shimizu, Jim Terhorst, and David McConville

Recently, the authors have successfully used OmniMap to implement active
and passive stereo systems as well as multiple projector configurations all pow-
ered by a single PC, and plan to integrate general implementations of these
functions into the library. The many developers bringing exciting applications
to immersive displays using OmniMap prove how projective perspective map-
ping systems are elegant, simple, and cost effective in their computer hardware,
projector optics, and software implementation.

References

1. Blake, E.H.: The natural flow of perspective: Reformulating perspective projection
for computer animation. Leonardo 23 (1990) 401–409

2. Benosman, R., Kang, S.: A brief historical perspective on panorama. Panoramic
vision: sensors, theory, and applications (2001) 5–20

3. McConville, D.: Cosmological cinema: Pedagogy, propaganda, and perturbation in
early dome theaters. Technoetic Arts 5 (2007) 69–85

4. Lantz, E.: A survey of large-scale immersive displays. In: EDT ’07: Proc. of the
2007 Workshop on Emerging Displays Technologies, ACM (2007) 1

5. Shaw, J., Lantz, E.: Dome theaters: Spheres of influence. In: Trends in Leisure
Entertainment. (1998) 59–65

6. The Elumenati, LLC: Omnimap api, real–time geometry correction library.
http://www.elumenati.com/products/omnimap.html (2008)

7. Raskar, R., van Baar, J., Willwacher, T., Rao, S.: Quadric transfer for immersive
curved screen displays. Comput. Graph. Forum 23 (2004) 451–460

8. Raskar, R., van Baar, J., Beardsley, P., Willwacher, T., Rao, S., Forlines, C.: ilamps:
Geometrically aware and selfconfiguring projectors. SIGGRAPH (2003)

9. Majumder, A., Brown, M.S.: Practical Multi-projector Display Design. A. K.
Peters, Ltd., Natick, MA, USA (2007)

10. Elumens Corporation: The SPIClops API. (2001)
11. Chen, J., Harm, D.L., Loftin, R.B., Lin, C., Leiss, E.L.: A virtual environment

system for the comparison of dome and hmd systems. In: Proc. of the International
Conference on Computer Graphics and Spatial Information System. (2003) 50–58

12. Bourke, P.: Low cost projection environment for immersive gaming. In: JMM
(Journal of Multimedia). Volume 3. (2008) 41–46

13. Ries, B., Colucci, D., Lindquist, J., Interrante, V., Anderson, L.: VRWindow: Tech
Report. Digital Technology Center, University of Minnesota. (2006)

14. Greene, N., Heckbert, P.: Creating raster omnimax images from multiple perspec-
tive views using the elliptical weighted average filter. In: IEEE Computer Graphics
and Applications. (1986) 21–27

15. Konieczny, J., Shimizu, C., Meyer, G.W., Colucci, D.: A handheld flexible display
system. In: IEEE Visualization. (2005) 75

16. Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., Haeberli, P.: Fast shadows
and lighting effects using texture mapping. SIGGRAPH 26 (1992) 249–252

17. Everitt, C., Rege, A., Cebenoyan, C.: Hardware shadow mapping. Technical report,
http://developer.nvidia.com/object/hwshadowmap paper.html (2002)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts (1994)

19. Ierusalimschy, R.: Programming in Lua, 2nd Edition. Lua.Org (2006)
20. Schuytema, P., Manyen, M.: Game Dev. with LUA. Charles River Media (2005)


